Invalid data dump - Amazon Redshift, Data Pipeline and S3

Amazon Data Pipeline (DPL) is late entrant to the ETL market but provides many features that are well integrated to AWS cloud.  In any data extraction process one would encounter invalid or incorrect data and that data may either be logged or ignored depending on the business requirements or severity of rejected data.

When you have your data flow through S3 to other platforms, be it, Redshift, RDS, DynamoDB, etc. in AWS you can use S3 to dump that data.   In an example, similar to one DPL below, in one of the step you could filter and dump to S3 for later analysis.



By standardizing the rejections from different DPLs, another DPL can regularly load them back into Redshift for quick realtime analysis or deep dive into them downstream.  This will also greatly help in recovery and reruns when needed.

Following is simple high level steps where rejected data is directed to S3.  The parameters are provided through the environment setup.  For example: #{myDPL_schema_name} = 'prod_public' and #{myDPL_error_log_path} = 's3://emr_cluster/ad/clicks/...'


 

-- PreProcess 
-- Load staging stable and at the same time update data error column in it when possible.
INSERT INTO #{myDPL_schema_name}.#{myDPL_staging_table}
SELECT col1,
  col2,
  col3,
  etc
  CASE WHEN 
  AS data_error
FROM #{myDPL_schema_name}.#{myDPL_source_table}
LEFT OUTER JOIN #{myDPL_schema_name}.table_1
  ON ...
LEFT OUTER JOIN #{myDPL_schema_name}.dim_1
  ON ... 
LEFT OUTER JOIN #{myDPL_schema_name}.dim_N
  ON ...
WHERE ...


-- OR, If data_error column is updated separately...
UPDATE #{myDPL_schema_name}.{myDPL_staging_table}
SET data_error = ...
FROM #{myDPL_schema_name}.{myDPL_staging_table}
JOIN #{myDPL_schema_name}.dim_1
JOIN #{myDPL_schema_name}.dim_N
WHERE ...

-- Temporary table
CREATE TEMP TABLE this_subject_dpl_rejections AS (
SELECT
  ...
FROM #{myDPL_schema_name}.#{myDPL_staging_table}
WHERE data_error IS NOT NULL
);

-- Dump to S3
UNLOAD ('SELECT * FROM this_subject_dpl_rejections')
TO '#{myDPL_ErrorLogPath}/yyyy=#{format(@scheduledStartTime,'YYYY')}/
  mm=#{format(@scheduledStartTime,'MM')}/dd=#{format(@scheduledStartTime,'dd')}/
  hh=#{format(@scheduledStartTime,'HH')}/ran_on_#{@actualStartTime}_file_'
CREDENTIALS 'aws_access_key_id=#{myDPL_AWSAccessKey};aws_secret_access_key=#{myDPL_AWSSecretKey}'
GZIP
PARALLEL OFF
ALLOWOVERWRITE;
Now load the errors back to Redshift...
COPY #{myDPL_schema_name}.#{myDPL_error_table}
FROM  '#{myDPL_ErrorLogPath}/yyyy=#{format(@scheduledStartTime,'YYYY')}/
  mm=#{format(@scheduledStartTime,'MM')}/dd=#{format(@scheduledStartTime,'dd')}/ 
  hh=#{format(@scheduledStartTime,'HH')}/'
CREDENTIALS 'aws_access_key_id=#{myDPL_AWSAccessKey};aws_secret_access_key=#{myDPL_AWSSecretKey}'
DELIMITER  '|' 
GZIP 
TRIMBLANKS
TRUNCATECLUNS 
IGNOREBLANKLINES

3 comments:

  1. This comment has been removed by a blog administrator.

    ReplyDelete
  2. The content is good and very informative and I must appreciate you for sharing AWS articles with us.

    Best Regards,
    CourseIng - AWS Online Training in Hyderabad

    ReplyDelete
  3. I really enjoy simply reading all of your weblogs. Simply wanted to inform you that you have people like me who appreciate your work. Definitely a great post.
    AWS training in chennai | AWS training in anna nagar | AWS training in omr | AWS training in porur | AWS training in tambaram | AWS training in velachery

    ReplyDelete